रोबोट को जिंदा मशीन बनाने की तैयारी | विज्ञान | DW | 03.08.2011
  1. Inhalt
  2. Navigation
  3. Weitere Inhalte
  4. Metanavigation
  5. Suche
  6. Choose from 30 Languages
विज्ञापन

विज्ञान

रोबोट को जिंदा मशीन बनाने की तैयारी

मनुष्य के रोमांच और खेल के लिए बैटरी लगा कर बने रोबोट्स के दिन अब लद गए. रोबोटिक्स विज्ञान और तकनीन में नई क्रांति हो रही है जिसे इवोल्यूशनरी रोबोटिक कहा जाता है. अब रोबोट्स का पालतू जानवर की तरह इस्तेमाल करने का विचार.

बीलेफेल्ड के रोबोटिक्स प्रोफेसर हेल्गे रिटर अपने जापानी सहयोगी मिनोरू असादा के साथ. चाइल्ड रोबोट सीबी2 प्रोजेक्ट के साथ.

बीलेफेल्ड के रोबोटिक्स प्रोफेसर हेल्गे रिटर अपने जापानी सहयोगी मिनोरू असादा के साथ. चाइल्ड रोबोट सीबी2 प्रोजेक्ट के साथ.

सिर्फ पालतू बनाने का विचार ही नहीं बल्कि वे रोबोटों को पैदा करने की भी बात कर रहे हैं. इवोल्यूशनरी रोबोटिक की खासियत है कि इसके तहत रोबोट्स में मनुष्यों वाली विशेषताएं भी होंगी. रोबोट में इस्तेमाल होने वाली मशीनें डायनामिक होंगी, आस पास के वातावरण से खुद को एडजस्ट कर लेंगी, खुद को बदल सकेंगी, नकार कर सकेंगी. साथ ही अपने आप सीख सकेंगी, सहायता करेंगी, विकसित होंगी और जिंदा प्राणी या व्यक्ति की तरह खुद को विकसित कर सकेंगी.

गड़बड़ी के मारे

साल में एक बार रोबोट्स की चैंपियनशिप होती है जिसमें फुटबॉल, राहत ऑपरेशन और घर में काम आने वाले रोबोट्स एक दूसरे से भिड़ते हैं. रोबोटों की क्षमता दिखाने वाली ये प्रतियोगिताएं अक्सर रोबोटों में गड़बड़ी के कारण फेल हो जाती हैं.

Flash-Galerie ELROB Kampfroboter

एर्लोब नाम का जंगी रोबोट

मुश्किल यह है कि रोबोट के लिए सॉफ्टवेयर बनाने वाला प्रोग्रामर हर उस स्थिति के बारे में नहीं सोच सकता जो एक खेल के दौरान सामने आती हैं. स्टुटगार्ट यूनिवर्सिटी में इलेक्ट्रो टेकनीक और इन्फो टेकनीक के जानकार पॉल लेवी बताते हैं कि फुटबॉल मैच की संभावित स्थितियां तय कर ली जाती हैं. खिलाड़ियों को इन हालात को समझना होगा और इसके हिसाब से प्रतिक्रिया देनी होगी लेकिन यह इवोल्यूशनरी नहीं है.

रोबोट में इवोल्यूशन

इवोल्यूशनरी, यह शब्द रोबोटिक्स विज्ञान में काम करने वाले अलग अलग विभागों के लिए अहम शब्द है. उनका विचार है कि अगर रोबोट तकनीक में विकास का सिद्धांत आ जाए तो रोबोट अपने दम पर हल निकाल सकेंगे, ऐसा हल जो उनके सॉफ्टवेयर में नहीं डला होगा. यह काम कैसे संभव है, इस बारे में पॉल लेवी एक रोबोट का उदाहरण देते हैं जिसे चीज ढूंढनी है. रोबोट को यह अपने आप ढूंढना है. उसमें लगे कैमरे और तापमान मापने वाले यंत्र इसे नहीं ढूंढ सकेंगे. लेकिन रोबोट की सूंघने की ताकत इसमें काम आ सकती है. वह बताते हैं, "अगर यह जीने के लिए सबसे जरूरी है कि वे सूंघें तो हमें इसे शक्तिशाली बनाना होगा. मैं चीज तेजी से कैसे ढूंढू जो मेरे खाने की वस्तु है. ऐसा करने के लिए मुझे दूसरी खूबियां कम करनी होंगी क्योंकि उनकी हमेशा जरूरत नहीं है."

जीवित प्राणियों में प्राकृतिक इवोल्यूशन का आधार म्यूटेशन यानी उत्परिवर्तन है. इसका मतलब है आनुवांशिक धरोहर में गलतियों से भरे हुए बिलकुल छोटे छोटे बदलाव. पीढ़ी दर पीढ़ी यह बदलाव अपने आप आगे जाते हैं. इस तरह के बदलाव उत्तरजीविता या जीवित रहने के लिए लाभदायक अगर हों तो बदले हुए जीन लंबे समय तक रहते हैं.

Aufnahme eines Roboters an der Uni Bielefeld

बीलेफेल्ड यूनिवर्सिटी में रोबोट्स

प्रयोग दर प्रयोग

रोबोटिक्स के वैज्ञानिक इसके लिए एक प्रयोग कर रहे हैं. करीब सौ रोबोटो को चीज ढूंढने का काम मिलेगा. जीव विज्ञान में जो काम जिनोम का है वही रोबोटिक में सॉफ्टवेयर का है. लेकिन चुनौती से भरा काम है कि जीन प्राकृतिक तरीके से खुद को बदल लेता है लेकिन रोबोट में यह सॉफ्टवेयर को करना होता है. इस तरीके से अलग अलग तरीके के सॉफ्टवेयर विकसित होते हैं जो दूसरे से ज्यादा सफल होते हैं. उदाहरण के लिए किसी सॉफ्टवेयर में सूंघने की ताकत ज्यादा है तो किसी के कैमरे को पढ़ने की शक्ति ज्यादा, या कुछ रोबोट जो तेजी से चीज ढूंढ सकते हैं. तो वैज्ञानिक सभी के गुणों को मिला कर एक नया रोबोट बनाते हैं. "ट्यूबिंगन के जेनेटिक्स विशेषज्ञों ने वर्चुअल सेक्स का प्रयोग किया. सेक्स का मतलब हमारे लिए बिलकुल अलग है. लेकिन इस प्रयोग के तहत इन्फोर्मेशन या प्रोग्राम का लेन देन हुआ."

पैदा हुए रोबोटों के गुण

नए पैदा हुए रोबोट बेबी में मां रोबोट और पिता रोबोट के प्रोग्राम्स डाले गए. हर रोबोट के खास गुणों के कारण बेबी रोबोटों में भी अलग अलग गुण (सॉफ्टवेयर की खासियत) आए. लेकिन ये बेबी रोबोट अपने जनक से मिलते जुलते हैं. जैसे कि पर्यावरण की रक्षा के लिए काम करने वाले रोबोट में सूंघने की शक्ति भी काम करने लगी है.

इस मेकेनिज्म के तहत पालकों के गुण नए रोबोटों में मिलाए जाते हैं, जबकि प्राकृतिक उत्प्रेरण में एक और गुण होता है. उसमें बच्चों में ऐसे भी गुण या जीन विकसित होते हैं जो माता या पिता किसी में नहीं हैं. तो नए रोबोटों में सूंघने के सेंसर ताकतवर अगर हो गए हैं तो ऐसे भी रोबोट हो सकते हैं जिनमें सूंघने के अलावा तापमान महसूस करने के सेंसर भी विकसित हो जाएं. गलती से ही, लेकिन ऐसा हुआ है कि जिन रोबोटों में दो अन्य रोबोटों के गुण डाले गए, उनमें ऐसे गुण भी विकसित हो गए जो पेरेंट रोबोट्स में नहीं थे. इस तरह के उत्परिवर्तन अनजाने विकास में तब्दील हो सकते हैं, जिसके बारे में इंजीनियरों ने सोचा ही नहीं था.

Nahaufnahme eines Greifarms an der Uni Bielefeld

सेब को नजाकत से पकड सकने वाले रोबोट

लेवी इस उत्परिवर्तन के बारे में समझाते हैं, "जीव विज्ञान में इस तरह के प्रयोग हो रहे हैं. उत्परिवर्तन अपने संदेश भेजता और मान कर चलता है कि इनमें से तीस फीसदी वापस आ जाएंगे." इंजीनियरों को यह परेशान करता है. वे कहते हैं, "हम इस तरह से काम नहीं कर सकते है जब हम जानते हों कि हर बार तीस प्रतिशत का नुकसान हो जाएगा. लेकिन इवोल्यूशन में बहुत प्रयोगों और शोध के बाद बदलाव होते हैं जिन बदलावों से सबसे ज्यादा फायदा होता है उन्हें नियमों के तौर पर सेव कर लिया जाता है."

गलती बनाम सॉफ्टवेयर

प्रकृति में उत्परिवर्तन के लिए इंजीनियरों की जरूरत नहीं थी. इंजीनियरों की जगह छोटी छोटी गलतियां थी जिससे उत्परिवर्तन हुआ. प्रकृति में ही नहीं रोबोट की दुनिया में भी यह सिद्धांत काम कर रहा है. रोबोटों की पांच पीढ़ियों में मिश्रण किया गया है और सफल प्रोग्राम्स को आगे की पीढ़ी में डाला गया. इस कारण रोबोटों की क्षमता भी बढ़ गई है.

रिपोर्टः डॉयचे वेले/आभा मोंढे

संपादनः ए कुमार

DW.COM

WWW-Links

विज्ञापन